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Continuum saltation model for sand dunes
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We derive a phenomenological continuum saltation model for aeolian sand transport that can serve as an
efficient tool for geomorphological applications. The coupled differential equations for the average density and
velocity of sand in the saltation layer reproduce both the known equilibrium relations for the sand flux and the
time evolution of the sand flux as predicted by microscopic saltation models. The three phenomenological
parameters of the model are a reference height for the grain-air interaction, an effective restitution coefficient
for the grain-bed interaction, and a multiplication factor characterizing the chain reaction caused by the impacts
leading to a typical time or length scale of the saturation transients. We determine the values of these param-
eters by comparing our model with wind tunnel measurements. Our main interest are out of equilibrium
situations where saturation transients are important, for instance at phase boundaries~ground/sand! or under
unsteady wind conditions. We point out that saturation transients are indispensable for a proper description of
sand flux over structured terrain, by applying the model to the windward side of an isolated dune, thereby
resolving recently reported discrepancies between field measurements and theoretical predictions.
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I. INTRODUCTION

Aeolian sand transport, from the entrainment of sin
grains to the formation and movement of dunes, have b
studied for a long time. One of the most important issues
been the relationq(u* ) between the shear velocityu* and
the saturated sand fluxq. The simplest flux law, which gives
a cubic relation between shear velocity and sand flux, w
already introduced by Bagnold in 1936@1#. Since that time,
many new flux relations have been proposed and used
different authors. The most important improvement was
introduce a threshold to account for the fact that at low w
speeds no sand transport occurs.~An overview of the histori-
cal development can be found in Ref.@2#.! One of the most
widely used flux relations with threshold was proposed
Lettau and Lettau@3#. Analytical derivations of the flux re-
lation starting from a microscopic picture deepened the
derstanding of the aeolian transport mechanisms a lot@4–7#.
An application of sand flux relations is geomorphologic
problems, where they are used to calculate the erosion
from the wind shear stress in order to predict the evolution
a free sand surface or dune. However, all flux relations of
type q(u* ) assume that the sand flux is everywhere sa
rated. This condition is hardly fulfilled at the windward fo
of an isolated dune, e.g. a barchan~crescent shaped dune
discussed in Sec. VII!, where the bed changes rapidly fro
bedrock to sand. Correlated measurements of the sand
and the wind speed performed by Wiggset al. @8# showed a
large discrepancy between the measured flux and theore
predictions of the sand flux using the relation by Lettau a
Lettau near the dune’s windward foot. Numerical simulatio
of barchan dunes by Wippermann and Gross@9# that employ
this flux law also revealed this problem. Apart from the co
ditions at the dune’s foot, it is conceivable that the sand fl
may never reach saturation on the entire windward side
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dune, where the shear velocity increases gradually from
foot to the crest. Such effects are obviously not captured
an equilibrium flux law. To overcome the limitation of th
equilibrium relations and to get information about the d
namics of the aeolian sand transport, numerical simulati
based on the grain scale have been performed@10–12#. They
showed that the typical time to reach the equilibrium state
saltation on a flat surface is approximately two secon
which was later confirmed by wind tunnel measureme
@13#. The problem of simulations on the basis of grains
that they can neither now nor in the near future be used
calculate the evolution of macroscopic geomorphologies.

In the following we derive a dynamic continuum mod
that allows for saturation transients and can thus be app
to calculate efficiently the erosion in presence of pha
boundaries and velocity gradients. In Sec. II we introduce
phenomenology of aeolian sand transport. In Sec. III we
velop a continuum model for a thin fluidlike sand layer on
immobile bed including the time dependence of the sa
transport and saturation transients. The following secti
discuss special cases, where certain restrictions lead to
pler versions of the model. In Sec. IV we discuss the sa
rated limit of the model and compare it with flux relation
and experimental data from the literature. In Sec. V we d
regard the spatial dependence of the sand flux and con
trate on the time evolution of the saltation layer. In Sec.
we present a reduced ‘‘minimal model’’ that can easily
applied to geomorphological problems. Finally, we apply t
model in Sec. VII to predict the sand flux on the central sl
of a barchan dune.

II. SAND TRANSPORT AND SALTATION

Conventionally, according to the degree of detachmen
the grains from the ground, different mechanisms of aeo
and transport such as suspension and bed load are d
guished. The bed load can be further divided into saltat
and reptation or creep. A detailed overview of this class
©2001 The American Physical Society05-1
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cation can be found in Ref.@2#. If we consider typical sand
storms, when shear velocities are in the range of 0.18
0.6 m s21 @2#, particles with a maximum diameter of 0.04
0.06 mm can be transported in suspension. The grain
typical dune sand have a diameter of the order of 0.25
and are therefore transported via bed load. For this reaso
neglect suspension in the following discussion. Furtherm
we do not distinguish between saltation and reptation
consider jumping grains with a mean trajectory length.

The saltation transport can conceptually be divided i
four subprocesses. To initiate saltation some grains hav
be entrained directly by the air. This will be called dire
aerodynamic entrainment. If there is already a sufficien
large amount of grains in the air the direct aerodynamic
trainment is negligible and grains are mainly ejected by
pacting grains. The entrained grains are accelerated by
wind along their trajectory mainly by the drag force befo
they impact onto the bed, again. This is called the spl
process, which comprises the complicated interaction
tween bed and impacting grain and is currently the subjec
theoretical and experimental investigations@14,15#. Finally,
the momentum transfered from the air to the grains lead
turn to a deceleration of the air. Through this feedba
mechanism the saltation dynamics reaches an equilibr
state, characterized by a saturated densityrs and an average
velocity us of the saltating grains.

In the following we develop an effective continuu
model in order to calculate the bed-load transport. The v
ables will be the densityr and mean velocityu of the grains
within a thin surface layer. The closed system of equati
will have three phenomenological parameters. The first
rametera models the loss of energy in the splash proc
and characterizes the grain-bed interaction. It can be tho
of as an effective restitution coefficient. The second para
eter z1 is a reference height between the ground and
mean trajectory height and characterizes the air-grain in
action. These two parameters determine the saturated
flux qs , whereas the third parameterg determines the time
scaleTs or length scalel s of the saturation transients.

III. A CONTINUUM MODEL FOR SALTATION

We consider the bed load as a thin fluid-like granu
layer on top of an immobile sand bed. This idea was int
duced by Bouchaudet al. @16# and used in the following to
model avalanches on inclined surfaces near the angle o
pose @17,18#. This general idea was later also applied
model the formation and propagation of sand ripples@19,20#.
To avoid cumbersome notations we restrict ourselves t
two-dimensional description of a slice of a three-dimensio
system that is aligned with the wind direction. By this sim
plification we neglect the lateral transport, caused for
stance by gravity or diffusion, which is typically an order
magnitude smaller than the flux in the wind direction. A fu
ther simplification@16–18# is obtained by integrating ove
the vertical coordinate, which leads to scalar functions a
equations for the moving layer.

We start the derivation from the mass and moment
conservation in presence of erosion and external for
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Since the saltation layer can exchange grains with the be
represents an open system with the erosion rateG as a source
term,

]r

]t
1

]

]x
~ru!5G. ~1!

Here,r(x,t) and u(x,t) denote the density and velocity o
the grains in the saltation layer, respectively. The erosion
G(x,t) counts the number of grains per time and area that
mobilized.

The most important forces acting on the grains are
drag forcef drag(x,t) when the grains are in the air, whic
accelerates the grains, and the friction forcef bed(x,t) repre-
senting the complicated interaction with the bed, which d
celerates the grains. Thus, we can write the momentum c
servation for the saltation layer as

]u

]t
1S u

]

]xDu5
1

r
~ f drag1 f bed!. ~2!

Anticipating changes inr(x,t) to be slow compared to
those inu(x,t), we have adopted an adiabatic approximati
and takenr out of the derivatives. Additional forces like
gravity that might be important on inclined surfaces or d
fusion caused by the splash process are neglected he
keep the model as simple as possible, but could easily
added on the right hand side of Eq.~2!. In the following
sections we derive phenomenological expressions for
erosion rateG and the forcesf drag and f bed, which will
finally lead to a closed model.

A. The atmospheric boundary layer

Sand transport takes place in the turbulent boundary la
of the atmosphere, near the surface. The Navier-Stokes e
tion rair] tv1rair(v•“)v52“p1“t, wherev denotes the
wind velocity,rair the density of the air,p the pressure, and
t the shear stress of the air, reduces to

]t

]z
50 or t5const, ~3!

by making the usual boundary layer approximation, negle
ing ]/]x,]/]y against]/]z and assuming steady]/]t50
and horizontally uniform (v•“)v50 flow. At wind velocities
for which sand transport is possible, the air flow is high
turbulent. Therefore, we can neglect the bare viscosity of
air and identifyt with the turbulent shear stress. The sta
dard turbulent closure using the mixing length theory mod
the turbulent shear stresst,

t5rairk
2z2S ]v

]zD 2

, ~4!

wherek'0.4 denotes the von Ka´rmán constant. From equa
tion ~4! we obtain by introducing the characteristic she
velocity u* ,

]v
]z

5
u*
kz

with u* 5A t

rair
. ~5!
5-2
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CONTINUUM SALTATION MODEL FOR SAND DUNES PHYSICAL REVIEW E64 031305
Integration of Eq.~5! leads finally to the well known law o
the wall for turbulent flow and therefore to the logarithm
profile of the atmospheric boundary layer

v~z!5
u*
k

ln
z

z0
, ~6!

wherez0 denotes the roughness length of the surface.

B. The grain borne shear stress

In presence of saltating grains near the ground, the air
transfer momentum to the grains, which thereby transpo
part of the shear stress down to the surface. This idea
introduced by Owen@4# and has widely been used in analy
cal saltation models and numerical simulatio
@527,11,12,21,22#. Accordingly, we distinguish the grain
borne shear stresstg and the air borne shear stressta , which
together have to maintain the overall shear stresst,

t5ta~z!1tg~z!5const. ~7!

At the topzm of the saltation layer, the air borne shear stre
ta has to be equal to the overall shear stresst, ta(zm)5t.

The typical trajectory of a saltating grain intersects w
each height levelz two times, once when ascending and on
when descending. Between these two intersections the w
accelerates the grain along its trajectory, thereby increa
its horizontal velocity between the ascending and descen
intersection. From this velocity difference we can calcul
the shear stress transported by the grains at each levelz,

tg~z!5F@udown~z!2uup~z!#5FDug~z!, ~8!

whereF denotes the flux of grains impacting onto the s
face, anduup andudown the horizontal velocity of the grain
at the ascending and descending intersection of the trajec
with the height levelz.

As sketched in Fig. 1 we can relate both the horizon
sand fluxq and the flux of grains impacting onto the surfa
F to the number of grainsN, their massm, the saltation
length l, and the flightT time for the trajectory,

F5
Nm

laT
5

q

l
, ~9!

FIG. 1. Sketch of the horizontal sand fluxq caused by saltating
grains passing the vertical rectangle. The dashed rectangle s
the surface areal times a that is used to calculate the fluxF of
grains impacting onto the surface, wherel is the length of the sal-
tation trajectory.
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wherea is the arbitrary width of the slice, considered he
Using Eqs.~8! and ~9! the grain borne shear stress can
expressed by the horizontal flux of grains,

tg~z!5
q

l
Dug~z!. ~10!

In the following we restrict the discussion to the gra
borne shear stresstg0 at the ground that is given by th
momentum transfer from the grains to the bed during th
impacts as sketched in Fig. 1. We denote quantities that
taken at the ground with an index 0, e.g.tg05tg(z0), where
z0 is the height at the ground. We need the impact and e
tion velocities of the grains or moreover the change in ho
zontal velocityDug0 at the ground to calculate the mome
tum transfer. In order to keep the discussion simple we w
directly formulate the model in terms of mean values for t
trajectory lengthl and its timeT instead of writing every-
thing in terms of not well known distribution functions.

The average saltation lengthl and the average saltatio
time T are related byl 5u T. We estimate both as the fligh
time and length of a simple ballistic trajectory,

T5
2uz0

g
, l 5u

2uz0

g
, ~11!

whereuz0 is the vertical component of the initial velocity o
the grain andg the acceleration by gravity. The typical va
ues for the time and length of a mean saltation traject
depend on the shear velocityu* , T(u* )'1.7u* /g and
l (u* )'18u

*
2 /g @14#. For a shear velocityu* 50.5 m s21 we

obtainT'0.08 s andl'0.45 m. Calculations of grain trajec
tories confirm that this approximation gives the correct or
of magnitude for the flight timeT, e.g., So”rensen obtained
T51.75u* /g @21#. Inserting the saltation length of Eq.~11!
in Eq. ~10! and usingq5ru we obtain

tg05r
g

2

Dug0

uz0
. ~12!

The relation between the impact and ejection veloc
is in general defined by the splash functionS(uim ,
a im , . . . ;ue j ,ae j , . . . ) giving the probability that a grain is
ejected at a certain angle and velocity due to an impac
grain with a certain angle and velocity@11,14,15#. The sim-
plest possibility is to take the vertical component of the ej
tion velocity uz0 proportional to the horizontal velocity dif
ferenceDug0 and to neglect the angle dependence,

uz05a Dug0 . ~13!

Here, we have introduced the first model parametera that
represents an effective restitution coefficient for the gra
bed interaction. In principle, it can be calculated from t
splash functionS, but here we regard it as a phenomenolo
cal parameter to be determined later by comparing the mo
with experimental results. With Eq.~13!, Eq. ~12! reduces to
the simple result

ws
5-3
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tg05r
g

2a
~14!

for the grain borne shear stress. The fact that it is linear in
densityr and independent of the velocityu is an interesting
result that is nota priori obvious. Indeed, if we had chose
the effective restitution coefficienta(u) as a function of the
velocity we would obtain a velocity dependence. Why is t
velocity unimportant or only of little importance fortg0?
This can be explained by looking at the trajectory length
the saltating grains, which scales with the square of the h
zontal velocity (l}u2) leading to a decrease of the density
impacts with increasingu. This compensates the higher m
mentum transfer of a single grain due to its higher veloc

C. Erosion and deposition rates

Grains impacting onto a bed of grains either reboun
directly or remain on the bed. In the latter case the energ
the impact can dislodge several new grains leading t
strong amplification of the grain density in the saltation lay
and in turn to erosion. The probability that a certain num
of grains leaves the surface with a certain velocity is in g
eral given by the splash functionS @11,14,15# mentioned
above. A part of the information contained in the splash fu
tion has already been comprised into the model parameta
that relates the average horizontal velocity difference to
vertical component of the average ejection velocity. Anot
part can be represented by the average numbern of grains
disloged by an impacting grain. Together,a andn determine
the simple effective splash function used in this model,

S~uz0 ,Dug0!5nd~a Dug02uz0!. ~15!

Using the average numbern of grains dislodged by an im
pacting grain we can define the erosion rate as the net a
age rate of grains leaving the surface, which is the differe
between the flux of grains leaving the surface and the flux
grains impacting onto it,

G5F~n21!5
tg0

Dug0
~n21!. ~16!

It is important to realize that the air borne shear stress wi
the saltation layer, and therewithn, is lowered if the number
of grains in the saltation layer increases and vice versa. T
is the feedback effect discussed in Sec. II. According
Owen @4#, the air borne shear stress at the bedta0 in the
equilibrium is just large enough to keep saltation alive a
therefore close to the thresholdt t5rairu* t

2 . Forta0.t t , the
number of grains in the saltation layer increases in a ch
reaction (n.1) whereas forta0,t t (n,1) saltation cannot
be maintained. To model the average numbern of dislodged
grains out of equilibrium we writen as a functionn(ta /t t)
with n(1)51. We furthermore assume thatn can be ex-
panded into a Taylor series at the threshold and neglec
terms after the linear order,
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nS ta0

t t
D511g̃S ta0

t t
21D . . . . ~17!

The model parameterg̃ characterizes the strength of the er
sion and determines how fast the system reaches the equ
rium or reacts to perturbations. It depends on microsco
quantities and details of the grain-bed interaction, which
not available in the scope of this model. Therefore, we h
to determineg̃ later by comparison with measurements
microscopic computer simulations.

If we insert Eqs.~7! and ~17! in Eq. ~16!, we obtain for
the erosion rate

G5g̃
tg0

Dug0
S t2tg0

t t
21D . ~18!

Assuming that the difference between impact and eject
locity of the grains is proportional to the mean grain veloc
(Dug0}u) finally leads to

G5g
tg0

u S t2tg0

t t
21D , ~19!

where the proportionality constant is incorporated ing. In
order to close the system of equations we have to insert
expression for the grain borne shear stresstg0 from Eq.~14!.

Up to now, we discussed the entrainment of grains due
impacts of other grains, but if the air shear stress excee
certain value t ta.t t , called aerodynamic entrainmen
threshold, grains can directly be lifted from the bed. The
directly entrained grains have been neglected up to now,
cause they are only important to initiate saltation@10,11#.
Anderson @11# proposed an aerodynamic entrainment r
proportional to the difference between the air borne sh
stressta and the thresholdt ta ,

Ga5FaS ta0

t ta
21D5FaS t2tg0

t ta
21D , ~20!

whereFa' 5.731024 kg m22 s21 @11# is a model param-
eter defining the strength of the erosion rate for aerodyna
entrainment. This formula for the direct aerodynamic e
trainment rateGa has a similar structure as Eq.~19! for sal-
tation induced entrainment, but the prefactors are differe

D. Forces

In Sec. III we introduced the drag and friction force
f drag and f bed, acting on the saltation layer. In the followin
we have to specify these forces. Modeling the friction for
is simple, because we already derived an expression for
grain borne shear stress at the groundtg0, Eq. ~14!. The bed
friction f bed has exactly to compensate this grain borne sh
stress,

f bed52tg0 . ~21!

We represent the wind force acting on the grains inside
saltation layer by the Newton drag force
5-4
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Fdrag5
1

2
rairCd

pd2

4
~vair2vg!uvair2vgu ~22!

of a spherical particle, whered denotes the grain diamete
Cd the drag coefficient,vg the velocity of a grain, andvair
the velocity of the air. MultiplyingFdrag with the densityr
of the saltation layer and dividing it by the massm of a grain
with diameterd and densityrquartz, we obtain the drag force
acting on a volume element of the saltation layer,

f drag5r
3

4
Cd

rair

rquartz

1

d
~ve f f2u!uve f f2uu. ~23!

Here, ve f f is an effective wind velocity, which is the wind
speed taken at a reference heightz1 within the saltation layer.
This reference height is another model parameter and ha
be determined by comparing the sand flux with measu
data as we will do it in Sec. IV. Neglecting the effect of th
saltating grains on the wind field, we could use the logar
mic profile atz1 to calculate the effective wind speed. B
saltating grains in the air change the air shear stress and
wind speed. This is the feedback effect mentioned above
the mechanism how an equilibrium sand flux is reached
order to calculate the perturbed wind speed we use again
standard turbulent closure~5!, which relates the strain rate t
the turbulent shear stress. In contrast to the case with
grains, where the shear stresst of the air is constant inz, the
air borne shear stressta as given by Eq.~7! is now varying
in z,

]v
]z

5
u*
kz
A12

tg~z!

t
. ~24!

The profile oftg(z) was found to be nearly exponential
simulations@11#. Furthermore, we already know the gra
borne shear stress at the groundtg0. Hence, we can write

]v
]z

5
u*
kz
A12

tg0

t
e2z/zm, ~25!

wherezm denotes the mean saltation height. The integrat
of Eq. ~25! has to be performed from the roughness heighz0
to a reference heightz1,zm . Therefore we linearize the ex
ponential function to integrate Eq.~25! and obtain the effec-
tive wind velocity

ve f f5
u*
k
A12

tg0

t S 2A122A01 ln
~A121!~A011!

~A111!~A021! D
~26!

with

Ai5A11
zi

zm

tg0

t2tg0
. ~27!

For a reference heightz1 much smaller than the mean salt
tion heightzm (z0,z1!zm) we can simplify Eq.~26! to
03130
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ve f f5
u*
k
A12

tg0

t S 2A1221 ln
z1

z0
D . ~28!

For vanishing grain borne shear stresstg0→0, the effective
wind velocityve f f reduces to the velocity of the undisturbe
logarithmic profile at heightz1. The values of the parameter
z0 andzm can be obtained from measurements, whereas
value of the reference heightz1 is a free phenomenologica
parameter of the model that we have to estimate by com
ing the saturated flux predicted by our model with measu
ments.

E. Closed model

So far, we have introduced the erosion rateG, the drag
force f drag , and the bed interactionf bed and expressed them
in the preceding sections in terms of the mean densityr and
the mean velocityu of the saltating grains. Furthermore, w
have introduced two model parametersa andz1 determining
the equilibrium state of the saltation layer, and the param
g that controls the relaxation to equilibrium. Inserting Eq
~19! and ~14! in Eq. ~1! leads to an equation for the san
densityr in the saltation layer,

]r

]t
1

]

]x
~ru!5g

g

2a

t2t t

t t

r

u S 12
g

2a

1

t2t t
r D . ~29!

Here, we can identify two important physical quantities, t
saturated densityrs and the characteristic timeTs that define
the steady state and the transients of the sand densitr,
respectively,

rs5
2a

g
~t2t t!, ~30!

Ts5
2au

g

t t

g~t2t t!
. ~31!

With these expressions we can rewrite Eq.~29! in a more
compact form,

]r

]t
1

]

]x
~ru!5

1

Ts
rS 12

r

rs
D . ~32!

Direct aerodynamic entrainment, i.e., the initiation of sal
tion, has been neglected in Eq.~32!, but can easily be in-
cluded by adding the erosion rateGa of Eq. ~20! to the right
hand side. Furthermore, inserting Eqs.~21! and ~23! in Eq.
~2! leads to a model for the sand velocityu in the saltation
layer,

]u

]t
1S u

]

]xDu5
3

4
Cd

rair

rquartz

1

d
~ve f f2u!uve f f2uu2

g

2a
,

~33!

with ve f f defined in Eq.~28!. Finally, the Eqs.~32!, ~30!,
~31!, ~33!, and~28! define the closed model for the sand flu
in the saltation layer.

We want to emphasize thatTs(t,u) andl s(t,u)5Ts u are
not constant, but depend on the external shear stresst of the
5-5
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wind and the mean grain velocityu. Using Eq.~11! we can
relate the characteristic timeTs and lengthl s of the satura-
tion transients to the saltation timeT and the saltation length
l of the average grain trajectory,

Ts5T
t t

g̃~t2t t!
, l s5 l

t t

g̃~t2t t!
. ~34!

For typical wind speeds, the time to reach saturation is in
order of 2 s @10–12#. Assuming a grain velocity of 3–5

m s21 @23# we obtain a length scale of the order of 10 m f
saturation. This length scale is large enough to play an
portant role in dune formation. We want to emphasize t
the characteristic lengthl s and timeTs of the saturation tran-
sients, Eq.~34!, naturally result from the saltation kinetic
~in contrast to the heuristic ‘‘adaptation length’’ of Ref.@24#!.
Their functional dependence can be interpreted in the follo
ing way. The dominant mechanism to adapt the grain den
in the saltation layer after a change in external condition
by the chain reaction process modeled in Eq.~17!. Hence,l s

andTs depend inversely onto the ‘‘stiffness’’g̃(t/t t21) of
this multiplication process. Since the average grain can o
influence the number of grains in the saltation layer at
discrete times and positions where it interacts with the b
the saturation time/length are proportional to the time/len
of the average trajectory. The resulting nontrivial depende
of the saturation kinetics on the external conditions, wh
may be appreciated from Fig. 5 in Sec. VI, is essential fo
proper description of aeolian sand transport in structured
rain.

The mass and momentum Eqs.~32! and ~33! are coupled
partial differential equations and difficult to solve. In th
following sections we will first discuss the fully saturate
situation and later some dynamical properties of the salta
layer. Finally, we simplify the model in order to arrive at
minimal model that can easily be applied to geomorpholo
cal problems.

IV. SATURATED FLUX

The full dynamics of the saltation layer must be evalua
numerically, whereas the saturated flux — the stationary
lution (]/]t50) for a constant external shear stress@t(x,t)
5t# and a homogeneous bed (]/]x50) — can be calcu-
lated analytically from Eqs.~29! and ~33!. For shear veloci-
ties below the threshold (u* ,u* t) the solution is trivial,

rs~u* !50, us~u* !50, and qs~u* !50. ~35!

Above the threshold (u* .u* t) we obtain from Eq.~30! for
the steady state densityrs ,

rs~u* !5
2arair

g
~u

*
2 2u

* t
2 !. ~36!

Likewise we obtain from Eqs.~33! the steady state
velocity us ,
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us~u* !5
2u*
k
Az1

zm
1S 12

z1

zm
Du

* t
2

u
*
2

2
2u* t

k
1ust , ~37!

where

ust[us~u* t!5
u* t

k
ln

z1

z0
2A2 g d rquartz

3 a Cd rair
~38!

is the minimum velocity of the grains in the saltation lay
occurring at the threshold. In contrast to the densityrs the
velocity us does not go continuously to zero near the thre
old u* t . This is intuitively obvious, because grains at t
threshold have already a finite velocityust . Finally, we can
write for the steady state fluxqs5usrs ,

qs52a
rair

g
~u

*
2 2u

* t
2 !Fu*

2

k
Az1

zm
1S 12

z1

zm
Du

* t
2

u
*
2

2
2u* t

k
1ustG . ~39!

For large wind speeds (u* @u* t) the flux is asymptotically
proportional tou

*
3 , which is in accord with the prediction

of other saltation models@3,21,25#.
The saturated fluxqs , given by Eq.~39!, is now used to

determine the model parametersa andz1 by fitting it to flux
data measured in a wind tunnel by White and Mounla@26#.
Using the literature values: g59.81 m s22, rair
51.225 kg m23, rquartz52650 kg m23, zm50.04 m, z0
52.5 1025 m, D5d5250mm, Cd53 and u* t
50.28 m s21 @2,4,11# we obtain for the two model param
etersa50.35 andz150.005 m. For comparison we fitted t
the same set of data the sand transport laws given by B
nold @25#,

qB5CB

rair

g
Ad

D
u
*
3 , ~40!

Lettau and Lettau@3#,

qL5CL

rair

g
u
*
2 ~u* 2u* t!, ~41!

and So”rensen@21#,

qS5CS

rair

g
u* ~u* 2u* t!~u* 17.6*u* t12.05 m s21!

~42!

and obtainedCB51.98, CL54.10, andCS50.48.
The results are shown in Fig. 2, where the flux normaliz

by q05rair /(gu
*
3 ) is plotted versus the normalized she

velocity u* /u* t . Our result resembles So”rensen’s equation
but differs from the flux relation given by Lettau and Letta
For high shear velocities all transport laws show a cu
dependence on the shear velocity.

The comparison of the saturated sand flux with expe
mental data determined the two phenomenological par
etersa andz1. As anticipated above, the value obtained f
5-6
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z1, the reference height for momentum transfer, is well
low zm , the mean height of the saltation trajectories. T
justifiesa posteriori the linearization in Eq.~25!.

V. DYNAMICS

After the saturated case has been studied in the prece
section, we now investigate the dynamics of the saltat
layer in order to get an estimate for the saturation timeTs
and thus for the model parameterg. Figure 3 shows numeri
cal solutions of Eqs.~32! and ~33! for the time evolution of
the sand fluxq5u r using spatially homogeneous conditio
(]/]x50). To get rid of the free parameters in Eq.~20! we
neglectedGa , thus disregarding direct aerodynamic entra
ment, and assumed instead a small initial density. Due to
multiplication effect of the saltation process, the flux i
creases first exponentially and reaches the equilibrium s

FIG. 2. Comparison of the different theoretical flux relatio
~39!–~42! fitted to wind tunnel data of White. The fluxes are no
malized byq05rair /(gu

*
3 ). The saturated flux of our model an

the relation of So”rensen reproduce quite well the data, whereas
others do not show the same structure.

FIG. 3. Numerical simulations of the time evolution of th
full model given by Eqs.~32! and ~33! with a constant shea
velocity u* .
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after passing through a maximum att'2 s. The time tran-
sients are controlled by the parameterg and compare well
with measurements by Butterfield@13# and microscopic
simulations by Anderson@10,11# and McEwan and Willetts
@12# for g'0.4. An important result of the simulations o
Anderson was the dependence of the saturation time on
shear velocity and the overshoot neart'2 s. Both features
are well reproduced by our model.

VI. A MINIMAL MODEL FOR GEOMORPHOLOGICAL
APPLICATIONS

The change of desert topographies, e.g., the movem
growth, and shrinkage of dunes, depends mainly on the s
transport or erosion and the perturbations of the wind fi
caused by the topographies themselves. Here, we restrict
selves to the problem of the sand transport and assume
the shear velocity above a certain topography is known. T
time evolution of the topographyh(x,t) is then given by the
mass conservation,

]h

]t
52

1

rsand

]q

]x
, ~43!

wherersand is the mean density of the immobile dune san
To obtain the sand fluxq(x,t) one can in principle solve the
coupled differential equations for the densityr, Eq.~32!, and
velocity u, Eq. ~33!, of the sand in the saltation layer. How
ever, for most geomorphological applications a simplifi
version of our model will be sufficient. In the following, w
first derive this ‘‘minimal model’’ from the equations give
in Sec. III E and then show its usefulness by discussin
particular practical application in Sec. VII.

The first simplification is to use the stationary solutio
(]/]t50) of Eqs.~32! and~33!. This can be justified by the
fact that there are several orders of magnitude between
time scale of saltation~approximately 2 s! and the time scale
of the surface evolution of a dune~several days or weeks!.

Next, we consider the convective term (u]xu) that is only
important at places where large velocity gradients occur. T
is for instance the case in the wake region behind the brin
a dune, where the wind speed at the ground decreases
tically due to the flow separation of the air. Here, the iner
of the grains becomes important. To solve the model for
deposition in a wake region we want to consider an ideali
brink situation, where both the wind speed and the fricti
with the bed drop discontinuously from a finite value to ze
In this case, Eq.~33! reduces to

1

2

]u2

]x
5

3

4
Cd

rair

rquartz

1

d
u2. ~44!

This predicts an exponential decrease of the grain velo
over a characteristic length scalel dep54 d rquartz/
(3 Cd rair)'0.25 m. Hence, the deposition takes pla
within a length l dep! l s much shorter than the saturatio
length l s on the windward side. Field measurements of
side deposition agree with this conclusion@27#. Outside the

e
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wake regions, on the other hand, we can neglect the con
tive term (u]xu) and we obtain the mean stationary gra
velocity from Eq.~33!

u~r!5ve f f~r!2A2gdrquartz

3aCdrair
, ~45!

whereve f f(r) is defined by Eqs.~28! and~14!. Furthermore,
near the thresholdt t we can approximateve f f(r) by
ve f f(rs) making only a negligible error. For high she
stresses this is not in general possible. But, the sand flu
macroscopic geomorphological applications is nearly eve
where saturated, apart from places where external varia
change discontinously, e.g. at a phase boundary bedrock/
or at a flow separation~see Fig. 7!. Hence, we can replac
the densityr by the saturated densityrs for most applica-
tions, where the exact value of the flux at these places is
of importance. The advantage of this approximation is t
the velocityu is decoupled from the densityr and we can
insert the saturated velocityus of Eq. ~37! in Eq. ~32!. Re-
writing Eq. ~32! in in terms of the sand fluxq5r us and the
saturated sand fluxqs5rs us of Eq. ~39! leads to an equation
for the sand fluxq,

]

]x
q5

1

l s
qS 12

q

qs
D , ~46!

where

l s5
2a

g

us
2

g

t t

t2t t
~47!

is the saturation length depicted in Figure 5.
We want to emphasize that our most important result

geomorphological applications is Eq.~46!, which extends a
common saturated flux law by incorporating saturation tr
sients. It is to some extent independent of the particular fo
of the functionsl s and qs given in Eqs.~47! and ~39!. The
latter can be regarded as additional predictions of our mo
that one could also replace by other phenomenological r
tions or data tables obtained from wind tunnel measurem
if this turns out to be more suitable.

The saturated fluxqs ~39! and the model parametersa
50.35 andz150.005 m have been discussed in Sec. IV a
can be used unchanged in Eq.~46!. But with respect to the
full model of Sec. V the value ofg gets renormalized due t
the simplifications made in order to obtain Eq.~46!. The
most obvious difference of the solution of Eq.~46!, depicted
in Fig. 4, compared to the result of the full model in Sec.
is the missing overshoot. The value ofg50.2 had to be
adapted in order to obtain saturation transients between
and 2 s for typical values ofu* . The fact that the saturatio
length l s increases for shear velocities near the threshol
unchanged and shown in Figs. 4 and 5.

VII. THE SAND FLUX ON THE WINDWARD SIDE
OF A DUNE

The mass conservation, Eq.~43!, and the saturated san
flux relation by Lettau and Lettau, Eq.~41!, have been used
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many times to predict the evolution of a dune@9,28,29#. The
most successful work was done by Wippermann and Gr
@9#, but even they obtained an unphysical deposition at
windward foot of the dune, which tended to stretch the du
in length and flatten it, finally. This was avoided by anad
hoc smoothing operation, which led to a numerically stab
simulation by hiding the problem at the phase bound
~bedrock/sand!. The boundary problem is evident for an is
lated dune like a barchan sketched in Fig. 6. Recent fi
measurements@8# of the wind speed and the sand flux on t
central slice of a barchan dune show a large discrepa
between the measured sand flux at the windward foot and
sand flux predicted by Eq.~41! for the measured wind speed
The measured sand flux was a monotonously increa
function, whereas the calculated sand fluxes decreased
the dune’s foot due to the depression of the wind velocity
decrease of the flux is correlated with deposition at

FIG. 4. Numerical solution of the sand flux equation~46! for
different shear velocitiesu* . The model parameterg50.2 that
defines the length and time of the saturation transients was ch
here so that saturation is reached between 1 s and 2 s. Due t
simplifications made with respect to the full model, the initial ove
shoot is lost.

FIG. 5. The saturation lengthl s from Eq. ~47! is asymptotically
constant for high shear velocities~horizontal line!, but diverges for
shear velocities near the threshold.
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dune’s foot leading to a flattening of the dune. Already fro
the measurements it is evident, that a saturated flux law
not be applied near a phase boundary, where the bed cha
suddenly from bedrock to sand. A further problem apear
we integrate Eq.~43! in time using a flux relation of the form
q(u* ) that determines the sand influxqin5q@u* (xin)# and
outflux qout5q@u* (xout)# at the boundaries. This might b
true for the outflux, but not for the influx, which depen
normally on the upwind conditions and not on the wi
speed at the boundary. In particular, the influx of an isola
dune in a dune field should depend on the outflux of sev
dunes upwind. Even situations without influx are possib
e.g., if there is vegetation around the dune.

To elucidate this problem further, we calculated the sh
stress usingFLUENT 5 @30# with a ke-turbulence model for
the central profile, parallel to the wind direction, of a barch
measured in Morocco.~For more details see dune no. 7
Ref. @31#.! The exact calculation of the flow field is not o
importance for the following discussion, which only relies
characteristic qualitative features such as the depression
the dune’s foot. For the calculation of the sand flux we
sume bedrock up to the dune’s foot (xin525 m!, where ero-
sion is not possible (q5const). The sand flux over the bed
rock is therefore equal to the influx at the boundaryxin . The
sand fluxqL according to the relation by Lettau and Letta
Eq. ~41!, and the solution of the saturated fluxqs , Eq. ~39!,
predicted by our model are depicted in Fig. 7. Both mod
exhibit the unphysical deposition at the dune’s foot descri
above. This problem is resolved, when the ‘‘minim
model,’’ Eqs.~46!, ~47!, and~39!, are applied. In contrast to
a saturated flux law, the boundary conditions can freely
chosen in this model. Here, we used a constant influxqin ,
much smaller than the saturated one, which represents
interdune sand flux. At the outflow boundary we appli
]q/]x50. The solution is plotted in Fig. 7 in compariso
with the predictions of the simple flux relations. Due to t
saturation transients we obtain a monotonously increa
flux and therefore no deposition of sand at the dune’s fo
Finally, we want to point out that the flux on the entire win
ward side is never fully saturated due to the continuou
increasing shear stress. However, away from the bounda
is always close to the saturated value~compareq andqs in
Fig. 7!, which justifies the simplifications made in th
‘‘minimal model.’’

FIG. 6. Sketch of a barchan dune.
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VIII. CONCLUSION AND OUTLOOK

We derived a phenomenological sand transport model
reproduces the equilibrium sand fluxes measured in w
tunnels. The predicted evolution of the sand flux with tim
has the same qualitative average behavior as the sand
calculated with saltation models working on the microsco
grain scale. Finally, we proposed a ‘‘minimal model’’ th
can be used as an efficient tool for geomorphological ap
cations, such as the formation and migration of dunes. F
thermore, we showed that this model extends in a gen
way common saturated sand flux relation to a model t
incorporates saturation transients.

The phenomenological parameters for the saltation mo
which are effective restitution coefficients, a reference hei
within the saltation layer and a saturation length have b
estimated by comparison with measurements.

Using these parameters we applied our model to a g
morphological problem and calculated the sand flux ove
dune. We emphasized the importance of a nonequilibri
flux relation for the correct modeling of phase boundari
e.g., bedrock/sand, as they naturally occur for isolated du
Furthermore, we have shown that the model predicts sat
tion transients to persist over the entire windward side o

FIG. 7. Top: shear stresst of the air at the surface, calculated b
a ke-turbulence model usingFLUENT 5. Center: The sand flux ac
cording to the ‘‘minimal model,’’ Eq.~46!, the saturated sand flux
qs , Eq. ~39!, and the sand fluxqL predicted by the Lettau and
Lettau relation~41! have been calculated using the shear stress
picted at the top. Bottom: Height profile of the symmetry pla
of a barchan.
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dune, where the shear stress increases from the foot to
brink. Therefore, we claim that the saturation length defi
a length scale that is important for dune morphology in g
eral. The investigation of the implications of saturation tra
sients for dune formation are given in Ref.@32#. In particular,
the question of shape differences between small and l
dunes or the minimum size for slip-face formation are
interest and are discussed there. The extension of the m
to three dimensions and inclined surfaces, which is neces
on
en
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for applications to arbitrary terrains will be the subject
future work.

ACKNOWLEDGMENTS

We acknowledge the support of this work by the Deutsc
Forschungsgemeinschaft~DFG! under Contract No. HE
2731/1-1. Furthermore, we thank J. Soares Andrade, Jr.
many fruitful discussions.
by

a-
E.

rf.

es

nn,

int
@1# R. A. Bagnold, Proc. R. Soc. London, Ser. A157, 594 ~1936!.
@2# K. Pye and H. Tsoar,Aeolian Sand and Sand Dunes~Unwin

Hyman, London, 1990!.
@3# K. Lettau and H. H. Lettau,Exploring the World’s Driest Cli-

mate, edited by H. H. Lettau and K. Lettau~Center for Cli-
matic Research, University of Wisconsin, Madison, 1978!.

@4# P. R. Owen, J. Fluid Mech.20, 225 ~1964!.
@5# J. E. Ungar and P. K. Haff, Sedimentology34, 289 ~1987!.
@6# M. So”rensen, in Proceedings of International Workshop

Physics of Blown Sand, edited by O. E. Barndorff-Niels
et al. ~University of Aarhus, Aarhus, Denmark, 1985!, Vol. 1,
pp. 141–190.

@7# B. T. Werner, J. Geol.98, 1 ~1990!.
@8# G. F. S. Wiggs, I. Livingstone, and A. Warren, Geomorpholo

17, 29 ~1996!.
@9# F. K. Wippermann and G. Gross, Boundary-Layer Meteor

36, 319 ~1986!.
@10# R. S. Anderson and P. K. Haff, Science241, 820 ~1988!.
@11# R. S. Anderson, Acta Mech., Suppl. 1, 21~1991!.
@12# I. K. McEwan and B. B. Willetts, Acta Mech., Suppl. 1, 5

~1991!.
@13# G. R. Butterfield, inTurbulence: Perspectives on Flow an

Sediment Transport, edited by N. J. Clifford, J. R. French, an
J. Hardisty~Wiley, New York, 1993!, Chap. 13, pp. 305–335

@14# P. Nalpanis, J. C. R. Hunt, and C. F. Barrett, J. Fluid Me
251, 661 ~1993!.

@15# F. Rioual, A. Valance, and D. Bideau, Phys. Rev. E62, 2450
~2000!.

@16# J. P. Bouchaud, M. E. Cates, J. Ravi Prakash, and S. F.
wards, J. Phys. I4, 1383~1994!.
.

.

d-

@17# A. Mehta, J. M. Luck, and R. J. Needs, Phys. Rev. E53, 92
~1996!.

@18# J. P. Bouchaud, inPhysics of Dry Granular Media, Vol. 350 of
NATO Advanced Studies Institute, Series B: Physics, edited
H. J. Herrmann, J-P. Hovi, and S. Luding~Kluwer Academic,
Dordrecht, 1998!.

@19# R. B. Hoyle and A. W. Woods, Phys. Rev. E56, 6861~1997!.
@20# R. B. Hoyle and A. Mehta, Phys. Rev. Lett.83, 5170~1999!.
@21# M. So”rensen, Acta Mech., Suppl. 1, 67~1991!.
@22# M. R. Raupach, Acta Mech., Suppl. 1, 83~1991!.
@23# B. B. Willetts and M. A. Rice, in Proceedings of the Intern

tional Workshop on Physics of Blown Sand, edited by O.
Barndorff-Nielsen ~Memoirs, Denmark, 1985!, Vol. 8,
pp. 83–100.

@24# P. M. van Dijk, S. M. Arens, and J. H. van Boxel, Earth Su
Processes Landforms24, 319 ~1999!.

@25# R. A. Bagnold,The Physics of Blown Sand and Desert Dun
~Methuen, London, 1941!.

@26# B. R. White and H. Mounla, Acta Mech.1, Suppl. 1, 145
~1991!.

@27# R. R. McDonald and R. S. Anderson, Sedimentology42, 39
~1995!.

@28# O. Zeman and N. O. Jensen, Riso” National Laboratory Report
No. M-2738, 1988.

@29# J. M. T. Stam, Sedimentology44, 127 ~1997!.
@30# Fluent Inc.,FLUENT 5, 1999, finite volume solver.
@31# G. Sauermann, P. Rognon, A. Poliakov, and H. J. Herrma

Geomorphology36, 47 ~2000!.
@32# K. Kroy, G. Sauermann, and H. J. Herrmann, e-pr

cond-mat/0101380.
5-10


